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Université Henri Poincaré Nancy I, BP 239, F-54506 Vandœuvre lès Nancy Cedex, France
2 Institut für Festkörperforschung (Theorie II), Forschungszentrum Jülich, D-52425 Jülich,
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Abstract
The long-time kinetics of the spherical model in an external magnetic field
and below the equilibrium critical temperature is studied. The solution of the
associated stochastic Langevin equation is reduced exactly to a single non-
linear Volterra equation. For a sufficiently small external field, the kinetics of
the magnetization reversal transition from the metastable to the ground state
is compared to the ageing behaviour of coarsening systems quenched into the
low-temperature phase. For an oscillating magnetic field and below the critical
temperature, we find evidence for the absence of the frequency-dependent
dynamic phase transition, which was observed previously to occur in Ising-like
systems.

PACS numbers: 05.20.−y, 05.10.Gg, 75.10.Hk, 75.60.Ej, 02.30.Rz

1. Introduction

Non-equilibrium critical phenomena are a subject of intense research activity. A common way
to reach such a situation is through a rapid change of one of the macroscopic variables which
enter into the equation of state. For definiteness, consider a simple ferromagnet. It may be
brought out of equilibrium, for example, by starting initially from a fully disordered state and
then quenching the system rapidly to a temperature below the system’s critical temperature
Tc > 0. The resulting ageing behaviour has been the focus of intensive study, see [1–5]
for reviews. Another way to reach a non-equilibrium state is to start from a magnetically
ordered state below Tc and then turn on a magnetic field H oriented antiparallel with respect
to the magnetic order parameter. Then the system will find itself in a metastable state and a
magnetization reversal transition towards the stable ground state will take place, see [6, 7] for
reviews.

After quenching below Tc, the system undergoes phase-ordering, that is domains of a
time-dependent typical size L(t) ∼ t1/z form and grow, where z is the dynamical exponent.
As a consequence, a system of infinite size slowly evolves towards an equilibrium state,
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without ever reaching it. This evolution is more fully revealed through the study of two-time
quantities, such as the two-time autocorrelation function C(t, s) and the autoresponse function
R(t, s)

C(t, s) = 〈φ(t)φ(s)〉 R(t, s) = δ〈φ(t)〉
δh(s)

∣∣∣∣
h=0

(1.1)

where φ is the order parameter, h the conjugate magnetic field, t is called the observation
time and s the waiting time. Ageing occurs in the regime when s and τ = t − s > 0 are
simultaneously much larger than any microscopic time scale τmicro. In many systems, one
finds in the ageing regime a scaling behaviour, see [3, 4]

C(t, s) = s−bfC(t/s) R(t, s) = s−1−afR(t/s) (1.2)

where a and b are non-equilibrium exponents. For T < Tc, b = 0 while a depends on whether
there are short-range or long-range correlations in the equilibrium state. For short-range
correlations, a = 1/z, whereas for long-range correlations a = (d − 2 + η)/z [8]. The scaling
functions behave for large arguments x = t/s � 1 asymptotically as

fC(x) ∼ x−λC/z fR(x) ∼ x−λR/z (1.3)

where λC and λR are the autocorrelation [9, 10] and autoresponse [11] exponents, respectively.
While for a fully disordered initial state, it is traditionally accepted that λC = λR , for spatially
long-range initial correlations of the form Cini(r) ∼ |r|−d−α (with α � 0) the relation
λC = λR + α has been conjectured [11]. Furthermore, the rigorous arguments of [12] readily
yield λC � (d +α)/2. Very recently, different exponents λC �= λR have also been found in the
random sine-Gordon model and in addition λC < d/2 violates the rigorous bound mentioned
above [13]. In addition, and going beyond these traditional scaling arguments, it has been
proposed recently that the dynamical symmetry group of ageing systems might include more
general transformations than merely the simple dynamical scaling as expressed by equation
(1.2). In particular, there is evidence that the dynamical group of ageing systems includes
so-called local scale transformations related to conformal transformations in time [15]. If that
is the case, the form of the scaling function

fR(x) = r0x
1+a−λR/z(x − 1)−1−a (1.4)

is completely fixed (r0 is a normalization constant) [14, 15]. Going beyond phenomenological
tests, at least for the case z = 2 it can be shown that, given only the covariance of the response
functions under scale and also Galilei transformations, then a Ward identity guarantees the
covariance under the full group of local scale transformations [16]. Furthermore, the causality
condition R(t, s) = 0 for t < s also follows in a model-independent way [16]. Tests of Galilei
invariance require the consideration of spacetime-dependent response functions, going beyond
the autoresponse function R(t, s) of equation (1.2). Indeed, the phase-ordering kinetics of
the Glauber–Ising model has recently been shown to be Galilei invariant in the ageing regime
[17].

Another central question in this context is how to characterize whether/when under the
conditions just described the system is in thermodynamic equilibrium. It is convenient to
consider the fluctuation–dissipation ratio [18, 19]

X(t, s) = T R(t, s)

(
∂C(t, s)

∂s

)−1

. (1.5)

At equilibrium, the fluctuation–dissipation theorem states that X(t, s) = 1. The breaking of
the fluctuation–dissipation theorem has been investigated intensively both theoretically (see
e.g. [3–5, 20, 21]) and experimentally [22–24].
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Here we are interested in the non-equilibrium behaviour associated with the magnetization
reversal transition from the metastable to the equilibrium state. This problem has also received
intense attention, both experimentally (e.g. [25–27]) and theoretically, see [28–34]. What can
be learned about this process from the study of two-time quantities? Additional insight may
be obtained by studying the system’s response to a time-dependent, e.g. oscillating, magnetic
field and we shall study whether there exists a dynamic phase transition at a finite and non-
vanishing value of the period P of the field [35, 36]. Surprisingly, there is no such transition
in the spherical model, although it is known to occur, e.g., in the two-dimensional (2D) Ising
model.

In order to obtain explicit analytical results, we shall study the effects of a magnetic field
in the kinetic mean spherical model, to be defined precisely in section 2. This is one of the
very few models which can be solved exactly in a great variety of circumstances and has
been studied in detail in the past, either in the context of continuum field theories [37–43] or
else in the form of a lattice model [11, 44–50]. It is known that in d < 4 dimensions, the
spherical model yields results distinct from mean-field theory and therefore permits the study
of fluctuation effects. In addition, we recall that experimental results of the magnetization
reversal [25, 26] are usually described in terms of an anisotropic Heisenberg model. Recall
that the spherical model shares the following equilibrium properties with the O(3) Heisenberg
model and which distinguish it from the often-used Ising model:

• It has a continuous symmetry (O(n) in the n → ∞ limit).
• There is no equilibrium phase transition in 2D.
• The equilibrium specific heat exponent α < 0 in 3D.

These similarities might suggest that qualitatively the kinetics of spherical and the O(3)

Heisenberg models should be closer to each other than either is to the kinetics of the Ising
model. Still, the spherical model should be considered a toy model certainly not meant to be
physically realistic.

This paper is organized as follows. In section 2, the model is defined and the exact solution
outlined. All physical quantities can be expressed in terms of the time-dependent solution g(t)

of a non-linear Volterra integral equation. In section 3, the solution of this equation and its
asymptotics are discussed. In sections 4 and 5, single- and two-time observables are calculated
for the full time-range of the magnetization reversal transition for constant magnetic fields
and in section 6 time-dependent fields are considered. Section 7 presents our conclusions.
In the appendices, we comment on the numerical techniques and study the exact long-time
behaviour of the Volterra equation.

2. Model and formalism

We begin by recalling the definition of the kinetic mean spherical model, using the formalism
as exposed in [11, 44, 45, 47]. We consider a system of time-dependent classical spin variables
Sx(t) located on the sites x of a d-dimensional hypercubic lattice. They may take arbitrary
real values subject only to the mean spherical constraint∑

x

〈Sx(t)2〉 = N (2.1)

where N is the number of sites of the lattice. The role of imposing the spherical constraint
either microscopically or rather in the mean (which is the only case where the dynamics can
be solved) has been carefully studied recently [43]. Provided the infinite-volume limit is taken
before the long-time limit, either way of treating the spherical constraint leads to the same
results.
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The spherical model Hamiltonian reads

H = −J
∑
〈x,y〉

Sx(t)Sy(t) −
∑

x

Hx(t)Sx(t) (2.2)

where Hx(t) is the space- and time-dependent external magnetic field. The first sum extends
over nearest-neighbour pairs only and the second sum over the entire lattice. We choose units
such that J = 1. The system is supposed to be translation invariant in all directions. The
kinetics is assumed to be described in terms of a Langevin equation

dSx(t)

dt
=

∑
y(x)

Sy(t) − (2d + z(t))Sx(t) + Hx(t) + ηx(t) (2.3)

where the sum over y extends over the nearest neighbours of x. The Gaussian noise ηx(t)

describes that the model is in contact with a heat bath. It is characterized by a vanishing
ensemble average and the second moment

〈ηx(t)ηy(t ′)〉 = 2T δx,yδ(t − t ′). (2.4)

Finally, the function z(t) is fixed by the mean spherical constraint (2.1) and has to be
determined.

By a Fourier transformation

f̃ (q) =
∑

r

fr e−iq·r fr = (2π)−d

∫
B

dq f̃ (q) eiq·r (2.5)

where the integral is taken over the first Brillouin zone B, the Fourier-transformed spin variable
S̃(q, t) becomes

S̃(q, t) = e−ω(q)t

√
g(t)

[
S̃(q, 0) +

∫ t

0
dt ′ eω(q)t ′

√
g(t ′)[H̃ (q, t ′) + η̃(q, t ′)]

]
(2.6)

with the dispersion relation

ω(q) = 2
d∑

i=1

(1 − cos(qi)) (2.7)

and we have also defined

g(t) = exp

(
2
∫ t

0
dt ′ z(t ′)

)
. (2.8)

Clearly, the time dependence of S̃(q, t) and any correlators will be given in terms of the
function g = g(t).

We now derive the expressions for the correlators and response functions for an arbitrary
external field Hx(t) and general initial conditions. Consider the two-time spin–spin correlation
function

Cx,y(t, s) = Cx−y(t, s) = 〈Sx(t)Sy(s)〉 = (2π)−2d

∫
B2

dq dq′ ei(q·x+q′·y)〈S̃(q, t)S̃(q′, s)〉.
(2.9)

A straightforward calculation gives

C̃(q, q′; t, s) = 〈S̃(q, t)S̃(q′, s)〉

= e−ω(q)t−ω(q′)s
√

g(t)g(s)

[
(2π)dδd(q + q′)

(
C̃(q, t) + 2T

∫ t

0
dt ′ e2ω(q)t ′g(t ′)

)
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+ 〈S̃(q′, 0)〉
∫ t

0
dt ′ eω(q)t ′

√
g(t ′) H̃ (q, t ′)

+ 〈S̃(q, 0)〉
∫ s

0
ds ′ eω(q′)s ′√

g(s ′)H̃ (q′, s ′)

+
∫ t

0
dt ′ eω(q)t ′

√
g(t ′)H̃ (q, t ′)

∫ s

0
ds ′ eω(q′)s ′√

g(s ′)H̃ (q′, s ′)
]

(2.10)

where C̃(q, t) is the single-time correlator. Here the average was carried out over the noise
and the initial conditions Sx(0) such that

〈S̃(q, 0)〉 =
∑

x

〈Sx(0)〉 e−iq·x = (2π)dδd(q)S0. (2.11)

In direct space, the two-time autocorrelator becomes

Cx,x(t, s) = (2π)−2d

∫
B2

dq dq′ ei(q+q′)·xC̃(q, q′; t, s)

= 1√
g(t)g(s)

[
A

(
t + s

2

)
+ 2T

∫ s

0
duf

(
t + s

2
− u

)
g(u)

+ S0

∫ t

0
dt ′Bx(t ′)

√
g(t ′) + S0

∫ s

0
ds ′Bx(s ′)

√
g(s ′)

+
∫ t

0
dt ′Bx(t ′)

√
g(t ′)

∫ s

0
ds ′Bx(s ′)

√
g(s ′)

]
(2.12)

where we have defined

f (t) = (2π)−d

∫
B

dq e−2ω(q)t = (e−4t I0(4t))d

A(t) = (2π)−d

∫
B

dq e−2ω(q)t C̃(q, 0)

Bx(t) = (2π)−d

∫
B

dq eω(q)t+iq·xH̃ (q, t)

(2.13)

and I0 is a modified Bessel function [51]. We see explicitly how the initial magnetization S0

and the initial correlator Cx(0) affect the dynamics of the system.
It remains to determine the function g(t). Because of the spherical constraint (2.2) and

spatial translation invariance, the equal-time autocorrelator must satisfy

C0(t, t) =
∫
B

dq C̃(q, t) = 〈Sx(t)2〉 = 1. (2.14)

This in turn fixes z(t) or via (2.8) the function g(t) as the solution of a non-linear Volterra
integral equation

g(t) = A(t) + 2T

∫ t

0
dt ′ f (t − t ′)g(t ′) + 2S0

∫ t

0
dt ′Bx(t ′)

√
g(t ′) +

(∫ t

0
dt ′Bx(t ′)

√
g(t ′)

)2

.

(2.15)

For S0 = 0 and T = 0, equations (2.12), (2.15) had been derived before for the spherical spin-
glass [45]. Besides on time, g(t) also depends on the temperature T and the initial conditions
parametrized by S0 and Cx(0).
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The expressions for A(t) and Bx(t) simplify in certain cases. For uncorrelated initial
conditions

Cx,y(0) = (
1 − S2

0

)
δx,y + S2

0 . (2.16)

Then C̃(q, 0) = 1 − S2
0 + (2π)dδd(q)S2

0 and

A(t) = (
1 − S2

0

)
f (t) + S2

0 . (2.17)

For a spatially uniform magnetic field Hx(t) = H(t) we have

Bx(t) = H(t). (2.18)

These two conditions and consequently equations (2.17), (2.18) will be used throughout this
paper.

When S0 �= 0, it will be useful to consider besides C(t, s) also the connected two-time
autocorrelator (see [11] for an analogous situation in the one-dimensional (1D) Glauber–Ising
model)


(t, s) = 〈Sx(t)Sx(s)〉 − 〈Sx(t)〉〈Sx(s)〉. (2.19)

Finally, the response function is obtained in the usual way [11, 39, 40, 44, 45, 47] by
considering the linear response to the magnetic field. It is easy to see that in Fourier space

R̃(q, t, s) = δ〈S̃(q, t)〉
δh̃(q, s)

∣∣∣∣
hr=0

= e−ω(q)(t−s)

√
g(s)

g(t)
. (2.20)

From these expressions, the autocorrelation function C(t, s) = C0(t, s) and the autoresponse
function R(t, s) = R0(t, s) can be obtained by integrating over the momentum q.

Summarizing, the physically interesting correlation and response functions are given by
equations (2.12), (2.19), (2.20) together with the constraint (2.15). This constitutes the main
result of the general formalism.

In the next section, we turn towards the solution of these equations. Compared to the case
without an external magnetic field, this task is difficult since the underlying Volterra equation
(2.15) is non-linear. The mathematical theory of non-linear Volterra equations is still being
developed [52]. In a few cases, explicit analytic solutions can be found. Otherwise, we shall
turn to numerical methods.

3. Solution of the constraint

It is the peculiar feature of the kinetic spherical model that a complicated many-body problem
can be exactly reduced to the solution of a single equation. We first derive the exact late-time
asymptotic behaviour of the solution g(t) of equation (2.15) for a constant field H(t) = H ,
that is for times t � 1. Afterwards, we comment on the use of asymptotic expansions for the
calculation of physical observables.

It is convenient to consider first the initial condition S0 = 0 which is easier to handle. As
we shall see, the system actually loses its memory of the initial state quite rapidly.

A first condition on the late-time asymptotics comes from the known fact |Cx,x| � 1.
Together with equation (2.12), it is easy to see that the power-law dependence of g(t) on t as
found in [47] for the special case H = 0 and T < Tc is incompatible with that condition in
the case at hand.

We therefore try, for late times t � 1, an asymptotic exponential ansatz

g(t) = a et/τ (3.1)
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where a and τ are constants to be determined. Indeed equation (2.12) now shows that |Cx,x|
is bounded if τ > 0. To see this, observe that because of the ansatz (3.1) the main contribution
to the terms in equation (2.12) which depend on the magnetic field comes from the upper limit
of integration. Consequently, the quadratic term in Bx(t) dominates over the terms linear in
Bx(t) and also over those terms which do not contain Bx(t) at all. For large times t, s we have
asymptotically

lim
t,s→∞ Cx,x(t, s) = 4H 2τ 2 (3.2)

where the limit is taken for a constant time difference σ = t − s � 0. Inserting equation (3.1)
into equation (2.15) yields for S0 = 0, along the same lines

g(t) = A(t) + 2T

∫ t

0
dt ′ f (t − t ′)g(t ′) + 4H 2τ 2g(t) (3.3)

and with f (t) = (e−4t I0(4t))d from equation (2.13). Using the Laplace transformation

f̄ (p) =
∫ ∞

0
dt f (t) e−pt (3.4)

we find from (3.3)

ḡ(p) = Ā(p)

1 − 2T f̄ (p) − 4H 2τ 2
. (3.5)

This must be consistent with the Laplace-transformed ansatz of equation (3.1)

ḡ(p) = a

p − τ−1
. (3.6)

These two expressions can only be compatible if the denominator in equation (3.5) vanishes
at p = τ−1, i.e.

1 − 2T f̄ (τ−1) = 4H 2τ 2 (3.7)

and this must be a simple intersection (from equation (2.17) we know that A(t) > 0, therefore
Ā(p) > 0 can be related to a). Equation (3.7) is an implicit equation for τ and we now show
that there is always a unique solution, provided H �= 0.

First, we consider the case τ → 0. From the definition of f̄ (p) and f (t) > 0, we have
f̄ (p) > 0. Similarly, f (t) � 1 for t � 0 implies f̄ (p) � p−1. Therefore

lim
τ→0

(1 − 2T f̄ (τ−1)) = 1. (3.8)

Second, we consider the case τ → ∞. From the results of [47] on f̄ (p) one has

lim
τ→∞(1 − 2T f̄ (τ−1)) = 1 − T

Tc

. (3.9)

It is well known that the Laplace transformation f̄ (p) of a positive function f (t) decreases
monotonically with p [51]. Therefore, the left-hand side of equation (3.7) decreases
monotonically from 1 to 1 − T/Tc as τ increases from 0 to ∞, while the right-hand side ∼τ 2

increases monotonically for H �= 0. This establishes the existence of a simple intersection
and therefore of a unique τ which describes the late-time asymptotics of g(t) for H �= 0, see
equation (3.1). For |H | → 0 and T � Tc we find τ → ∞, while for H = 0 a solution for
τ only exists if T > Tc. This reproduces the well-known result that for H = 0, g(t) only
has an exponential behaviour for T > Tc [11, 47]. The fact that in the case H �= 0 we find
exponential behaviour for all temperatures T shows that the system relaxes to an equilibrium
state after the finite time τ [45] and neither critical behaviour nor ageing is expected for late
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Figure 1. The function g(t) (a) and the distance of the magnetization to its equilibrium value
(b) for d = 3.5, T = 2 (Tc ≈ 5.27), H = 0.1 and S0 = 0. The full curve shows the results for the
direct numerical calculation, the dashed line shows the results for the fifth order fit which coincides
with the full curve in (a).

times. It is now clear that adding the extra terms coming in for S0 �= 0 will merely generate
sub-leading corrections and the asymptotic solution (3.1) will not be affected.

In conclusion, we have established that the leading long-time asymptotic behaviour of
g(t) is given by equation (3.1) where τ is the unique solution of equation (3.7) and with
a = −Ā(1/τ)/(2T f̄ ′(1/τ)), for any value H �= 0 of the constant magnetic field and any
given mean initial magnetization S0.

For finite times, there is no analytical solution of equation (2.15) available. Instead, as
described in appendix A, we determine g(t) numerically. Although the two-time observables
are the relevant quantities for the study of ageing phenomena (see section 4), it is still useful
to consider single-time observables like the average magnetization S(t) given by

S(t) = 〈Sx(t)〉 = 1√
g(t)

[
S0 +

∫ t

0
dt ′H(t ′)

√
g(t ′)

]
. (3.10)

In practice, care is required in using asymptotic solutions of g(t) for the prediction of the
time dependence of observables such as S(t). We illustrate this in figure 1, where g(t) and the
distance of the magnetization to its equilibrium value S∞ − S(t) are shown as a function of
time. We see in figure 1(a) that after an initial fall-off, g(t) quickly reaches the asymptotical
regime of exponential growth. In figure 1(b), however, we compare the mean magnetization
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Figure 2. The magnetization of the system evolving from S0 = S∞ calculated for d = 3.5, T = 2
(<Tc), H = 0.2 and S0 ≈ 0.810.

S(t) as found from the exact numerical solution g(t) (see appendix A) with that obtained from
an asymptotic fit of the form

g(t) � et/τ

�max∑
�=0

a�(t − t0)
−� (3.11)

where we use �max = 5. Although that asymptotic fit for g(t) cannot be distinguished from
the exact numerical result in figure 1(a), the deviation in S(t) is considerable.

In the rest of this paper, we shall use the direct numerical solution of equation (2.15).

4. Single-time observables

Our first applications consider single-time observables, which are the ones most commonly
studied.

An instructive example on the importance of fluctuation effects is constructed as follows.
For a given external magnetic field H, one may easily calculate the equilibrium magnetization
Meq. Now prepare the system such that the spins have a mean magnetization Meq but such that
spins on different sites are uncorrelated. The time evolution of S(t) is shown in figure 2. While
a mean-field description would have predicted a constant S(t), we see that the magnetization
is not constant but increases towards a peak before it falls back to the equilibrium value Meq.
Intuitively, we would expect that the individual spins tend to align with the local magnetic
field provided by their neighbours. Since initially S0 = Meq > 0, one orientation is preferred
with respect to the other one and domains oriented in parallel to Meq will grow preferentially.
When the domains have grown large enough the influence of this effect decreases and the
system quickly approaches the equilibrium and the magnetization decreases again. This
picture, although close in spirit to the Ising model with its discrete spin variables, also works
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(b)

(a)

Figure 3. (a) Average magnetization S(t) for d = 3, T = 2 (<Tc � 3.96), H = 10−3 and S0 =
−0.5 (full curve), S0 = −0.75 (dashed curve) and S0 = −1 (dash-dotted curve). (b) Squared
correlation length λ(t)2 of fluctuations for S0 = −0.5, where the other parameters are as in (a).

in the spherical model, in spite of the fact that the interaction can be reduced to a free-field
theory. The remnant interaction between different spins provided by the spherical constraint
is sufficient to achieve non-trivial correlations between different spins.

We have seen in the previous section that for H �= 0 and very late times the system
relaxes back to its unique equilibrium state. For a vanishing magnetic field, the equilibrium
free energy would have a double-well structure with two equivalent minima, corresponding
to the two possible orientations of the mean magnetization. Turning on a magnetic field, this
potential is tilted and the depths of the two local minima are no longer the same. The lower
minimum becomes the unique equilibrium state, the other one corresponds to a metastable
state. It is clear that if the system is initially prepared in the well corresponding to the
equilibrium state, it will relax rapidly towards that state. Here we are interested in how the
transition from the metastable state towards the equilibrium state occurs.

Therefore, we prepare the system with an initial magnetization antiparallel to the given
external field. In figure 3(a) we show the time evolution of the mean magnetization. After
a short time the system reaches the metastable state, independent of the absolute value of
the initial magnetization S0, and where S(t) stays practically constant. The system remains
in the metastable state for several decades until the magnetization is reversed quite rapidly
(although one should not be misled by the logarithmic time scale in this figure which makes
the changeover appear to be very fast). In order to understand better what is going on we
define a characteristic length λ(t) of the fluctuations

λ(t)2 =
∑
r∈

r2(Cr(t, t) − S(t)2) (4.1)
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where r runs over all sites of the lattice  ⊂ Z
d and Cr(t, s) is the spin–spin correlation

function (2.9). The time evolution of λ(t) is shown in figure 3(b). Starting from a very small
initial value, λ(t) increases towards a maximum value which is reached at the time when S(t)

starts to deviate perceptably from its value in the metastable state. While S(t) changes its
sign, λ(t) remains approximately constant at its maximal values before it relaxes towards the
equilibrium correlation length, with a typical value of a few lattice spacings. The coincidence
of the times of the reversal of S(t) and the peak in λ(t) shows that whole domains rather than
single uncorrelated spins are flipping.

5. Two-time observables

Having seen that the magnetization reversal passes via an intermediate state with highly
correlated fluctuations, we discuss in this section how this manifests itself in the behaviour of
the two-time quantities. An important quantity is the time ϑ after which the magnetization
reverses itself. Evidently, ϑ = ϑ(H, T , d), but we have not investigated in detail how ϑ

depends on these parameters. For illustration purposes, we shall use in this section the same
choice of parameter values as in figure 3, then ϑ ≈ 3000. For finite values of t, g(t) can
be readily found from equation (2.15) using the numerical methods described in appendix A.
We shall focus on the metastable state by restricting to waiting times s in the intermediate
time regime s � ϑ . A magnetization reversal is seen if the initial magnetization is chosen
antiparallel to the external field.

Our choice of initially uncorrelated spin with a mean magnetization S0 can be considered
as a special case of initially correlated spins. The case of spatial long-range correlations of the
form Cini(r) ∼ |r|−d−α in the initial state was studied in detail before [11, 39]. Formally, this
reduces to an initial state with a constant mean magnetization in the limit α → −d. Using the
exact results of [11] for T < Tc, we have

C(t, s) = 1 − T

Tc

= M2
eq R(t, s) = [4π(t − s)]−d/2 (5.1)

where Meq is the equilibrium magnetization.
In figure 4(a) the correlation function C(t, s) is plotted versus the time difference t − s

for several values of the waiting times s which are chosen to be in the metastable state, that
is s � ϑ (compare figure 3(a)). After a short time the curves reach a plateau, with a value
very close to the equilibrium value C(t, s) = M2

eq (a small contribution of the magnetic
field can be neglected here). C(t, s) maintains itself at this value for approximatively three
decades, independent of the waiting time s. When the observation time t becomes larger than
the magnetization reversal time ϑ , the correlation function C(t, s) changes its sign because
the spins at time s before the reversal are anticorrelated with the spins at time t after the
reversal. However, we point out that the changeover takes more time when the waiting
time s is increased. The curves rapidly approach the expected value −M2

eq because spins of
the metastable state are compared to the stable state. So we conclude that the correlation
function C(t, s) is mainly determined by the value of magnetization.

While C(t, s) measures the time dependence of the autocorrelation of a given spin, 
(t, s),
see equation (2.19), measures the fluctuations. This is shown in figure 4(b). It can be seen that
for waiting times s � 1000, 
(t, s) decreases fairly rapidly as a function of the time difference
t − s. In addition, a small peak is observed in the region t ≈ ϑ . But for waiting times
closer to the magnetization reversal time ϑ (here for s = 2000 and s = 2500), the fluctuations
have become quite substantial and show a larger peak around (t − s) + s ≈ ϑ . This may be
viewed as another hint at the existence of correlated domains: as the spins inside a domain are
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Figure 4. The two-time autocorrelation function C(t, s) (a), the correlation of fluctuations

(t, s) (b) and the response function R(t, s) (c) plotted versus the time difference t − s for
waiting times s = {5; 300; 1000; 2000; 2500}; the data were calculated for d = 3, T = 2 and
H = 10−3. In (c) the straight line shows the formula [4π(t − s)]−d/2.

highly correlated a fluctuation of a spin within such a domain will cause other spins in the
domain to follow this fluctuation. In turn, a side effect of the enhanced correlations is a longer
lifetime of a spin fluctuation. After the magnetization reversal, 
(t, s) rapidly falls to zero.

Finally, in figure 4(c) the response function R(t, s) is shown. First, we observe that for a
time region of at least two decades we recover equation (5.1), which was derived in [11] for the
case without an external field. In this region translation invariance holds and hence no ageing
occurs. The system behaves as if it were in equilibrium although it is only in a metastable state.
Second, for observation times t getting closer to the reversal time ϑ , the response function
begins to deviate from this simple behaviour. We point out that the curves for all waiting times
s still collapse onto each other and that this deviation occurs although C(t, s) still has not
appreciably changed away from M2

eq. Third, for times t � ϑ the dependence on the waiting
times becomes obvious before the response curves decrease very fast. This can be explained
by considering that the memory of perturbations is lost during the reversal from the metastable
to the stable state.
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, where the parameters are as in figure 4. For reference, the grey line
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In order to decide whether the system is in equilibrium or not we shall now investigate
the zero-field-cooled (ZFC) magnetization which is defined by

MZFC = HT

∫ t

s

duR(t, u). (5.2)

This quantity may be related to the fluctuation–dissipation ratio using equation (1.5). Because
of the non-vanishing initial magnetization S0 and the presence of an external magnetic field,
the quantities C(t, s) and 
(t, s) are different and a fluctuation–dissipation ratio is better
defined using 
(t, s), namely X(t, s) = T R(t, s)(∂
(t, s)/∂s))−1. This had been checked
explicitly in the 1D Glauber–Ising model [11] and in certain simple model of glassy behaviour
[54]. In spin glasses, it has been shown [18, 19] from mean-field theory that X = X(C(t, s))

although that is not necessarily so beyond mean field or in simple ferromagnets [47, 53, 55].
Nevertheless, this assumption is of good heuristic value. In the spirit of the enterprise, let us
consider the case where X = X(
(t, s)). This amounts to saying that 
 serves as a clock for
the evolution of the system. Then

MZFC/H =
∫ 
(t,t)


(t,s)

d
 X(
). (5.3)

Consequently, when plotting MZFC(t, s)/H versus 
(t, s) for fixed s (see figure 5) the slope
of the curve corresponds to the value of X, provided of course that the assumptions leading to
(5.3) are valid3. Rather, we find in figure 5 that with increasing waiting time s the curves move
from the lower right to the upper left. On the other hand, for a given value of s, the system
starts in the lower right corner and moves rapidly along a curve MZFC(
) = 
0 − 
 until the
3 For metastable systems with detailed balance and for time scales shorter than the nucleation time, a fluctuation–
dissipation relation is discussed in [56].
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metastable value MZFC/H = 1−Mmeta � 1−Meq is reached. The slope of unity of this curve
is the same as would be found for an equilibrium system. Surprisingly, while it undergoes
the magnetization reversal, the system then passes through a loop, which corresponds to the
peak in 
(t, s), before it reaches a horizontal line, of height 1 − Meq. The movement along
the horizontal line is a behaviour typical of the low-temperature phase, indeed through the
magnetization reversal the system behaves as if the quasi-equilibrium branch close to the
metastable state had to be joined with the low-temperature behaviour after the magnetization
reversal. All in all, this behaviour is quite analogous to that observed for MZFC as a function
of C(t, s) for systems brought into the two-phase region by temperature quenching [57].

Of course, all the results in this section depend on having taken s � ϑ . If we take instead
s > ϑ , the system quickly relaxes to its unique equilibrium state.

6. Dynamics in an oscillating field

Further aspects of the magnetization reversal transitions become apparent when the response
of the system to a time-dependent external field H = H(t) is studied. This allows us to study
hysteresis effects—related to the easily measured Barkhausen noise—and has been studied
for a long time, see [6, 7] for reviews. From mean-field descriptions [35, 36, 58], one finds
evidence that, depending on the amplitude and the period P of H(t), the time-dependent (and
periodic) magnetization S(t) = S(t + P) changes between two different forms. First, there is
a single symmetric solution (corresponding to the paramagnetic phase) such that

S(t + P/2) = −S(t). (6.1)

Second, there may exist a pair of non-symmetric solutions in the ferromagnetic phase where
(6.1) does not hold. Indeed, the existence of a dynamical phase transition was established
beyond mean-field theory through simulations in the 2D Ising model with Glauber dynamics
[29–31]. The order parameter of this transition is the period-averaged magnetization Q = Q(t)

defined as

Q(t) = 1

P

∫ t

t−P

dt ′S(t ′) (6.2)

where P is the period of H(t). In the Ising model for sufficiently strong fields and/or low
frequencies Q = 0 and S(t) oscillates around zero, but Q remains finite for smaller fields and
higher frequencies and S(t) then oscillates around one of the two values of the equilibrium
magnetization. Detailed finite-size scaling analysis has shown that the exponents of Q(t) and
also of the associated susceptibility agree with those of the equilibrium phase transition of
the 2D Ising model [29, 30, 33]. This was further backed up by showing that the equation of
motion of the order parameter reduces to the φ4-theory with noise [58] (similar studies were
also performed on the equation of motion of the anisotropic XY model [59]).

Still, this kind of non-equilibrium phase transition need not generically exist. In the q-state
Potts model with q � 3, for example, a mean-field analysis shows that the time-dependent
order parameter undergoes a cascade of period-doubling bifurcations, rather than a simple
phase transition [36]. It is therefore of interest to explore the role of the topology of the phase
space further by considering a model in a different equilibrium universality class.

6.1. Behaviour of the magnetization

We consider the spatially constant but time-dependent external field

H(t) = H0 sin

(
2π

P
t

)
. (6.3)
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Figure 6. (a) The period-averaged magnetization Q(t) for d = 3, T = 2, S0 = 0, a sinusoidal
external field with period P = 1.5 and amplitude H0 = 0.2. (b) The Lagrange multiplier g(t). On
this scale only the behaviour of the bounds can be seen between which oscillations take place; these
oscillations are shown in the inset. The dashed line shows a power law g(t) = 0.1t−1.54 ≈ c · t−d/2.

The calculation of the observables follows the same lines as in the case of the constant field
although a larger numerical effort is required. By inserting equation (3.10) into equation (6.2)
the period-averaged magnetization Q(t) is readily obtained. In figure 6(a) a typical example
for Q(t) is shown but the behaviour seen in this case turns out to be generic. Taking the Ising
model as a guide, a heuristic argument [36] suggests that a dynamic phase transition should
occur at least for all temperatures and field amplitudes H0 for which a metastable state exists.
We therefore used the same values for T as before. However, in the spherical model we find
that for small times Q(t) takes a plateau value before it decays exponentially for later times.
In principle, and in analogy with the Ising model, one might try to find the dynamic phase
transition by measuring the time τ = τ (P,H0) when the transition between the plateau and
the decay occurs. Following the practical experience of the Ising model either the scale of H
or P can be normalized, see [29–31]. It should therefore be enough to vary the period P (or the
frequency) but keep the amplitude H0 constant and map out τ (P,H0). If there is a dynamic
phase transition at some critical period Pc, the crossover time should diverge τ(Pc,H0) = ∞.
In practice, however, this method is quite slow, because the calculations have to be made for
increasingly larger time scales.

It is a lot more efficient to study the Lagrange multiplier g(t) which is shown in
figure 6(b). We observe that the value of g(t) oscillates between two bounds and the temporal
behaviour of the bounds correlates with the time dependence of Q(t). Namely, when Q(t)

displays a plateau, the bounds for g(t) decay exponentially with time while in the region of
the exponential decay of Q(t) the bounds of g(t) decay according to a power law. Therefore,
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Figure 7. g(t) for d = 3, T = 2 and a sinusoidal external field with H0 = 0.2; the periods are
P = {0.4; 0.6; 0.8; 0.9; 1; 1.5; 2; 5; 10} (from top to bottom). The dashed line shows a function
gmas(t) = 0.1t−1.54 ≈ c · t−d/2.

the crossover time τ (P,H0) can be found by determining the intersection of the two regimes
for the bounds for g(t).

In figure 7 we display a typical behaviour of g(t) for several values of the period P.
We observe the crossover from a roughly exponential behaviour gexp(t) ≈ exp(−t/t) with a
relaxation time t towards a master curve gmas(t) ∼ t−1.54 which is reached for all given values
of P for sufficiently long times. In principle, one might try to estimate the time of crossover
between these two regimes by looking for the intersection of gexp(t) and gmas(t) and then
further ask when this crossover time will diverge in order to find the critical period Pc. Since
for finite t this intersection will always occur, a more reliable estimate of Pc will be given by
the condition t−1(Pc,H0) = 0.

In figure 8 we show t(P,H0) for d = 3 and d = 5, that is below and above the upper
critical dimension of the equilibrium critical behaviour. In all curves, we see that t(P ) remains
finite for all values of P which we considered. Phenomenologically, t ∼ 1/P v for P small
enough and some exponent v > 0 (v ≈ 1.4 in 3D; v � 1.95 in 5D). The fact that t only
diverges as P → 0 is evidence that there is no DPT in the spherical model in an oscillating
magnetic field, in contrast to established results [29–31, 33] in the 2D Ising model and also
with results on the n → ∞ limit of the O(n) model [60, 61]. We also see from figure 8 that
the absence of the DPT is not related to whether or not the equilibrium phase transition of the
spherical model is in the mean-field regime.

6.2. Behaviour of the Lagrange multiplier

By fitting gmas(t) for d = 3 and d = 5 we find exponents of w = 1.52 ± 0.01 and
w = 2.51 ± 0.01 respectively. From these observations, we conjecture that for sufficiently
long times, the Lagrange multiplier g(t) satisfies the bounds

C1 � twg(t) � C2 (6.4)

with an exponent w = d/2 and some constants C1,2. Indeed, we have also checked that these
bounds hold not only for sinusoidal fields H(t), but for triangular and rectangular oscillating
fields as well. Remarkably, the conjectured exponent w = d/2 of the power-law bounds (6.4)
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coincides with the same value found for the kinetic spherical model without a magnetic field
[47]! We have checked this for several values of the dimension d and temperatures T > 0.
In appendix B, we derive the bounds (6.4) and especially the exponent w = d/2 in the
P → 0 limit and for T = 0, under mild additional conditions. A fully disordered initial
state simplifies the calculations but the result remains the same for any short-range initial
correlators. Therefore, the relaxation time t(P,H0) is formally infinite for P � 1 and T = 0.
We have thus shown the absence of a DPT in the physical situation where it would have been
expected to be seen first. In this respect, the spherical model behaves in quite a different way
from the Ising model. The rigorous derivation of equation (6.4) is left as an open mathematical
problem.

The absence of a dynamical phase transition is further illustrated in figure 9. There we
compare g(t) with a rectangular field H(t) (scaled and shifted for convenience). While for
small times, g(t) oscillates with the driving period P, we see that with t increasing, an additional
peak builds up until g(t) oscillates with half the period of the driving field at late times. The
fact that g(t) oscillates with half the external period P is an indication that the system is
described by the symmetric solution, see equation (6.1). The same kind of period-halving is
also found for triangular and sinusoidal fields.

This phenomenon is easily understood: since for small times the magnetization oscillates
around a non-vanishing value, the global symmetry is broken and the two half-periods of the
external field affect the system in two qualitatively different ways. However, for later times
the magnetization oscillates around zero and there is no qualitative difference of the response
of the system between the two half-periods of the external field any more. This fact is reflected
by g(t) actually becoming periodic with period P/2, namely g(t + P/2) = g(t).

The behaviour of S(t) is illustrated in figures 10–12. For relatively small times (upper
panel), S(t) oscillates around the positive equilibrium value and is periodic with period P. It
is interesting to note that the qualitative shape of S(t) for the rectangular oscillating external
field in this regime matches closely the one observed in the dynamically ordered phase of the
2D Ising model, see [30, figure 2(b)]. For larger times, the dynamic order parameter Q(t)

decreases until S(t) oscillates around zero. The slow crossover towards a solution which
satisfies equation (6.1) is illustrated in the middle panels of figures 10–12 and in the lowest
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Figure 9. g(t) (full line) compared to H(t) (dotted line, scaled and shifted) for different times.
These calculations were made for d = 5, T = 4, S0 = 0 and a rectangular external field with
amplitude H0 = 0.6 and with period P = 1.
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Figure 10. Time evolution of the mean magnetization S(t) (full line) compared to that of a
rectangular magnetic field H(t) (dotted line, scaled and shifted) for different time regimes; the
parameters are as in figure 9.

panels, a situation near to (6.1) is reached, where S(t) becomes antiperiodic with period P/2.
In the case of a rectangular field shown in figure 10 the external magnetic-field amplitude is
still rather small which results in a linear increase and decrease of the magnetization. For
stronger fields the magnetization reaches saturation during one half-period and the behaviour
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Figure 11. Time evolution of the mean magnetization S(t) (full line) compared to that of a
sinusoidal magnetic field H(t) with amplitude H0 = 0.5 (dotted line, scaled and shifted) for
different time regimes; the other parameters are as in figure 9.
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Figure 12. Time evolution of the mean magnetization S(t) (full line) compared to that of a
triangular magnetic field H(t) with amplitude H0 = 0.5 (dotted line, scaled and shifted) for
different time regimes; the other parameters are as in figure 9.

of S(t) deviates from piecewise linearity. The comparison to the sinusoidal and triangular
oscillating external fields shows that in all three cases the magnetization follows the integrated
external field for not too large amplitudes.
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The main result of this section is surprising: in spite of the fact that for T < Tc there are
just two equilibrium states for both the Ising and the spherical models in a (sufficiently small)
constant magnetic field, the well-established dynamic phase transition of the Ising model in a
temporally oscillating magnetic field is apparently absent in the spherical model.

7. Conclusions

In this paper, we have investigated the non-equilibrium behaviour of the spherical model in an
external magnetic field. The model’s dynamics is described in terms of a Langevin equation
and all quantities of physical interest can be expressed exactly in terms of the solution of a
non-linear Volterra integral equation. In a few especially simple cases the Volterra equation
can be solved exactly, but we have in general used numerical methods.

First, we studied the magnetization reversal transition, in a temporally constant magnetic
field, which occurs if the system is initially prepared in a near to metastable state from which
it relaxes towards to a unique equilibrium state. We find that the system evolves into the
metastable state quickly and remains there for considerably long times until it finally relaxes
into the stable state. For not too large magnetic fields, this transition passes through transient
states with long-range correlations of fluctuations, which means that during the magnetization-
reversal transition whole domains rather than single uncorrelated spins turn over.

The two-time autocorrelation function is mainly determined by the magnetization so
that connected correlation functions, which are more sensible to fluctuations, reveal more
information. Again we find that the transition involves long-range correlations. For times
smaller than the transition time ϑ we find an effective equilibrium behaviour although the
system is merely in the metastable state. In many respects, notably the fluctuation–dissipation
relations, we find a close analogy with the ageing behaviour encountered in the absence of
an external field. But approaching the magnetization reversal the autoresponse function and
the fluctuation–dissipation ratio show unusual behaviour, indicating that the process is rather
complex. Therefore, although the non-vanishing magnetic field H sets a finite time scale for the
relaxation towards the single equilibrium state, we have found a very rich transient behaviour
which in many respects is quite analogous to the true ageing behaviour found without an
external field.

Second, we looked for a dynamic phase transition in a time-dependent external magnetic
field H(t). Surprisingly, we find evidence that a dynamic non-equilibrium phase transition,
which is known to occur, e.g., in the Ising model, apparently does not exist in the spherical
model. For sufficiently low temperatures, we rather find that although the dynamic order
parameter Q(t) reaches a plateau value for small times, there is always a crossover to a late-
time regime where Q(t) decays to zero. On a technical level, this finding can be represented
through the conjecture (6.4) which points to an unexpected similarity with the phase-ordering
kinetics of the zero-field spherical model.

Given that several equilibrium properties of the isotropic O(3) Heisenberg model are
closer to those of the spherical model than they are to the Ising model (see introduction), our
results raise the question whether a dynamic phase transition for the isotropic O(3) Heisenberg
model in an oscillating field exists4.

Lastly, our results beg the questions: what are the effects of a magnetic field on the
kinetics of a spin-glass and what becomes of the magnetization reversal transition and the
dynamical phase transition? However, because of the well-known equivalence [46] between
4 Existing articles on the DPT in Heisenberg models are either mean-field studies [34] or consider the anisotropic
case [62] (which should be more Ising-like). One might anticipate the existence of a critical nc such that in the
O(n)-model in an oscillating field, there is a DPT for n < nc analogous to the Ising model and none for n > nc .
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the spherical spin-glass and the spherical ferromagnet, studies in different systems with a true
glassy behaviour5 are needed to shed light on this issue.
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Appendix A. Numerical method

We briefly discuss the numerical solution of the non-linear Volterra equation (2.15), adapting
standard methods [65] to the case at hand.

Equation (2.15) is cast into the following form, using equations (2.17) and (2.18)

g(t) = (
1 − S2

0

)
f (t) + S2

0 + 2T

∫ t

0
dt ′ f (t − t ′)g(t ′)

+ 2S0

∫ t

0
dt ′ H(t ′)

√
g(t ′) +

(∫ t

0
dt ′ H(t ′)

√
g(t ′)

)2

. (A1)

As a first step we will discretize the time by dividing the time interval into N − 1 segments of
length k

ti = ki i = 0, 1, . . . , N − 1. (A2)

The continuous functions f (t) are replaced by the N-dimensional vectors

f = (f0, f1, . . . , fN − 1)T fi = f (ti) (A3)

and the integrals are replaced by a sum by means of the extended trapezoidal rule [65]∫ xN−1

x0

dx f (x) ≈ k

[
1

2
f0 + f1 + f2 + · · · + fN−2 +

1

2
fN−1

]
. (A4)

Therefore, we have the set of equations

F0((g0,
√

g0),f ,H, k) = 0

F1((g0,
√

g0), (g1,
√

g1),f ,H, k) = 0

. . .

FN−1((g0,
√

g0), (g1,
√

g1), . . . , (gN−1,
√

gN−1),f ,H, k) = 0

(A5)

depending on the known vectors f and H and the step size k. We have F0 = g0 − 1 and

Fi((g0,
√

g0), . . . , (gi,
√

gi),f ,H, k) = gi

[
T kf0 +

1

4
k2H 2

i − 1

]

+
√

gi


S0kHi + k2


1

2
H0

√
g0 +

i−1∑
j=1

Hj

√
gj


 Hi




5 The equilibrium behaviour of the Ising spin glass in a magnetic field has been studied in detail, see [63] and
references therein. For the spherical spin glass in an oscillating magnetic field short-time numerical calculations give
evidence in favour of a dynamic phase transition at T = 0 [64].
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+
(
1 − S2

0

)
fi + S2

0 + 2T k


1

2
fig0 +

i−1∑
j=1

fi−j gj




+ 2S0k


1

2
H0

√
g0 +

i−1∑
j=1

Hj

√
gj


 + k2


1

2
H0

√
g0 +

i−1∑
j=1

Hj

√
gj




2

. (A6)

This set of equations can be solved iteratively: F0 determines g0, F1 then leads to g1 and so
on. However, since the Fi are functions of gi and

√
gi at each step of iteration two a priori

distinct solutions for the gi are found. They may be obtained by replacing Gi = √
gi and

solving the resulting quadratic equation in Gi . So the question arises which of these solutions
has to be used.

We calculated the two solutions for g when only using either the solution according to
the positive root (‘+’-curve) or the negative one (‘−’-curve)—the exact solution should evolve
somewhere between these two limiting curves. We found that decreasing the step size k results
in an approach of the ‘−’-curve to the ‘+’-curve where the latter one only slightly changes.
Finally choosing a sufficiently small k the two curves collapse, so that the exact solution is
found. For larger values of k the ‘+’-curve shows only small deviations from the limiting
curve, so that in all calculations this solution was used.

For all calculations a step size of k = 10−2 was sufficient, except for the data shown in
figure 2 where k = 10−4 was used because there the time scale is much smaller.

The evaluation of the one- or two-time observables proceeds by a straightforward
implementation of their defining integrals by the extended trapezoidal rule.

Appendix B

We derive the bounds (6.4) for the Lagrange multiplier g(t) in an oscillating magnetic field
H(t), for the special case of vanishing temperature T = 0. For convenience, we consider a
fully disordered initial state and vanishing initial magnetization S0 = 0, but our results also
hold true for arbitrarily short-range initial conditions and S0 �= 0. We define G(t) := √

g(t).
The non-linear Volterra integral equation then is

G(t)2 = A(t) +

(∫ t

0
dsH(s)G(s)

)2

. (B1)

We shall assume throughout that G(t) is bounded on the positive real axis, that is
|G(t)| � M < ∞ for t ∈ [0,∞). This assumption is made plausible by our numerical
results displayed in figure 9. Furthermore, we shall assume that the magnetic field itself
is bounded, |H(t)| � H0. It then follows from (B1) that |G(t)2| � A(t) + H 2

0 M2t2. For
long times, we may therefore expect a leading power-law behaviour which we may write as
G(t) ∼ t−w/2. We wish to estimate w (the above argument gives w � −2).

Proposition. Let G(t) be a solution of equation (B1) and assume that there is a constant
M < ∞ such that |G(t)| � M for all times t ∈ [0,∞). Furthermore, the oscillating field
H(t) is assumed to be bounded |H(t)| � H0, piecewise continuous and to have the Fourier
expansion

H(t) = H0

∞∑
n=1

bn sin

(
2πn

P
t

)
(B2)
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such that

B :=
∞∑

n=1

1

n
|bn| (B3)

is convergent. Finally, let A(t) = f (t) = e−4dt I0(4t)d , where I0 is a modified Bessel function.
Then the exponent w of the asymptotic form G(t) ∼ t−w/2 for t → ∞ is for P � 1

w = d

2
. (B4)

Proof. First, for any magnetic field H(t), we trivially have from equation (B1) that
G(t)2 � A(t) = f (t) = (e−4t I0(4t))d and therefore, as t → ∞

G(t) � 1

(8π)d/4
t−d/4. (B5)

Consequently, w � d/2.
Second, we wish to find a sharp lower bound on w. This requires some preparations,

however. We begin by a discussion of the continuity of G(t). Let ε > 0 and consider

G(t + ε)2 − G(t)2 = (G(t + ε) − G(t)) (G(t + ε) + G(t))

= A(t + ε) − A(t) +
∫ t+ε

t

dsH(s)G(s)

(∫ t+ε

0
dsH(s)G(s) +

∫ t

0
dsH(s)G(s)

)
.

(B6)

Because of the first part and since A(t) decreases monotonically with t, we have G(t + ε) +
G(t) � 2

√
A(t + ε) and obtain the estimate

|G(t + ε) − G(t)| � ε
|Ȧ(tA)|

2
√

A(t + ε)
+

∫ t+ε

t

ds
|H(s)G(s)|
2
√

A(t + ε)

(
2
∫ t+ε

0
ds |H(s)G(s)| + O(ε)

)

� ε

[ |Ȧ(t)|
2
√

A(t)
+

H 2
0 M2t√
A(t)

+ O(ε)

]
. (B7)

Here the mean-value theorem was applied to A(t) where tA is some intermediate value,
tA ∈ [t, t + ε]. Taking the limit ε → 0, we conclude that G(t) is Lipschitz-continuous. Then
we can apply the mean-value theorem to equation (B6). Because of the continuity of G(t),
the limit

lim
ε→0

G(t + ε) − G(t)

ε
= Ȧ(t)

2G(t)
+ H(t)

∫ t

0
dsH(s)G(s) (B8)

exists for all times t ∈ [0,∞). Taking the derivative of (B1) with respect to t,G(t) satisfies
the differential equation

Ġ(t) = Ȧ(t)

2G(t)
+ H(t)

√
G(t)2 − A(t). (B9)

Therefore, if H(t) is continuous, Ġ(t) is also continuous. However, if H(t) has jumps, there
may be jumps in Ġ(t) as well.

We shall take the average of equation (B9) over the period interval [t, t +P ] of the external
field. In order to prepare this, let ϕ(t) be a continuously differentiable function. Then

1

P

∫ t+P

t

ds sin

(
2πn

P
s

)
ϕ(s) = P

2πn
cos

(
2πn

P
t

)
ϕ(t) − ϕ(t + P)

P

+
1

2πn

∫ t+P

t

ds cos

(
2πn

P
s

)
ϕ̇(s)

= P

2πn

[
−cos

(
2πn

P
t

)
ϕ̇(t1) + cos

(
2πn

P
t2

)
ϕ̇(t2)

]
(B10)
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where the mean-value theorems were applied and t1, t2 are intermediate values from the interval
[t, t + P ]. For P → 0, we expect t1, t2 → τ . Since −1 � cos x � 1, we obtain the following
bound for P � 1,∣∣∣∣ 1

P

∫ t+P

t

ds sin

(
2πn

P
s

)
ϕ(s)

∣∣∣∣ � P

πn
|ϕ̇(τ )| + o(P ). (B11)

Before carrying out the average over equation (B9), we consider the approximation of
H(t) as given by equation (B2) through a finite Fourier-sum HN(t) := ∑N

n=1 bn sin
(

2πn
P

t
)
.

For every finite value of N,HN(t) is continuous and if we use HN(t) in equation (B9), so is
Ġ(t). Furthermore, if H(t) is continuous, then HN(t) ⇒ H(t) converges uniformly and the
N → ∞ limit and the integral may be interchanged, namely

lim
N→∞

∫
dtHN(t)ϕ(t) =

∫
dtH(t)ϕ(t) (B12)

where ϕ(t) is some suitable function. If on the other hand H(t) is only piecewise continuous,
we only have pointwise convergence HN(t) → H(t). In this case, the well-known
Gibb’s phenomenon occurs which states that close to jump continuities the trigonometric
approximations HN(t) overshoot the limit H(t) by about 9% of the jump height, see [66].
Because H(t) is bounded, we certainly have the bound |HN(t)| � 3H0 for all N ∈ N

sufficiently large. Then the conditions of Lebesgue’s theorem, see [66], are satisfied and one
arrives again at (B12).

Averaging equation (B9) over a period interval, we obtain

1

P

∫ t+P

t

dsĠ(s) = 1

P

∫ t+P

t

ds
Ȧ(s)

2G(s)
+

1

P
lim

N→∞

∫ t+P

t

dsHN(s)
√

G(s)2 − A(s). (B13)

We now consider P � 1. The left-hand side and the first term on the right-hand side are
estimated by the mean-value theorem. For the second term, we use the inequality (B11) term
by term, taking the N → ∞ limit at the end. This gives, up to terms of order o(P )

∣∣Ġ(τ )
∣∣ � 1

2

∣∣∣∣ Ȧ(τ )

G(τ)

∣∣∣∣ +

∣∣∣∣ d

dτ

√
G(τ)2 − A(τ)

∣∣∣∣ H0P

π

∞∑
n=1

|bn|
n

� 1

2

∣∣∣∣ Ȧ(τ )

G(τ)

∣∣∣∣ +
H0PB

π

∣∣∣∣∣ Ȧ(τ )

2
√

G(τ)2 − A(τ)

∣∣∣∣∣ +
H0PB

π

G(τ)√
G(τ)2 − A(τ)

∣∣Ġ(τ )
∣∣ (B14)

where condition (B3) was used. We finally arrive at

∣∣Ġ(τ )
∣∣ �

∣∣∣∣ Ȧ(τ )

2G(τ)

∣∣∣∣�
(

H0PB

π
,

A(τ)

G(t)2

)
where �(α, x) :=

∣∣∣∣∣
1 + α√

1 − x

1 − α√
1 − x

∣∣∣∣∣ . (B15)

We now assume that the strict inequality w < d/2 holds. For large values of t, we then
have A(t)/G(t)2 ∼ tw−d/2 → 0. On the other hand, the function �(α, x) has a pole
at xc = 1 − α2 = 1 − (H0PB/π)2. There is a t0 sufficiently large, such that, say,
A(t0)/G(t0)

2 � xc/2 and for τ � t0, we have �(α,A(τ)/G(τ)2) � �(α, xc/2), which
is finite. In addition, for uncorrelated initial conditions A(t) = f (t), thus Ȧ(t) =
4d e−4dt I0(4t)d−1 [I1(4dt) − I0(4dt)] ∼ t−d/2−1. Inserting these asymptotic forms into
equation (B15), we find d/2 � w in contradiction with the assumption w < d/2. �

Condition (B3) is trivially satisfied for a sinusoidal field. For a triangular field, one has
bn ∼ n−2 and for a rectangular field, bn ∼ n−1. In both cases B is a finite constant and we
have w = d/2, in agreement with our numerical observation.
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The condition P � 1 is essential. For P finite, numerical calculations show that G(t)

goes towards a constant, modulated by a periodic function, thus w = 0. As P becomes smaller,
an intermediate regime appears, where G(t) ∼ t−d/4, up to a modulation, before the regime
mentioned above is reached. This will be described in detail elsewhere.

For any short-range initial condition, A(t) ∼ t−d/2 and our result w = d/2 stays the
same. On the other hand, for long-range initial correlations of the form Cini(r) ∼ |r|−d−α

with α < 0 [11], we obtain in the same way w = (d + α)/2.
Finally, for a non-vanishing initial magnetization S0 �= 0, we have

Ġ(t) = Ȧ(t)

2G(t)
+ S0H(t) + H(t)

√
G(t)2 − A(t). (B16)

Since
∫ t+P

t
dsH(s) = 0, the exponent w = d/2 is unchanged.
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[56] Baéz G, Larralde H, Levyraz F and Méndez-Sánchez R A 2003 Phys. Rev. Lett. 90 135701
[57] Parisi G, Ricci-Tersenghi F and Ruiz-Lorenzo J J 1999 Eur. Phys. J. B 11 317
[58] Fujisaka H, Tutu H and Rikvold P A 2001 Phys. Rev. E 63 036109
[59] Yasui T, Tutu H, Yamamoto M and Fujisaka H 2002 Phys. Rev. E 66 036123

Yasui T, Tutu H, Yamamoto M and Fujisaka H 2003 Phys. Rev. E 67 019901(E) (erratum)
[60] Rao M, Krishnamurthy H R and Pandit R 1990 Phys. Rev. B 42 856
[61] Dhar D and Thomas P 1992 J. Phys. A: Math. Gen. 25 4967
[62] Jang H and Grimson M J 2001 Phys. Rev. E 63 066119

Jang H, Grimson M J and Hall C K 2003 Phys. Rev. B 67 094411
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